Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(3): 3754-3763, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770968

RESUMO

In this paper, a composite planar spiral antenna consisting of an eight-arm equiangular spiral antenna and eight Archimedean spiral antennas has been designed to radiate electromagnetic wave carrying tunable angular momenta in a wide band. A tunable eight-way Wilkinson power divider network is used to offer three kinds of feeding modes for the equiangular spiral antenna, and thus the composite antenna can radiate the electromagnetic waves with angular momenta of the modes l=1, 2, and 3, respectively. The Archimedean spiral is introduced to improve the gain of the composite antenna in the case of the angular momentum of l=3. By analyzing axis ratio (AR) of the proposed antenna, the generated angular momentum of l=1 is spin angular momentum (SAM), and the angular momenta of both l=2 and 3 include SAM and orbital angular momentum (OAM). Simulated and measured results are given to demonstrate good performance including tunable modes, good purity and wide band.

2.
J Integr Neurosci ; 19(4): 651-662, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33378839

RESUMO

Recent studies have shown that Nogo-A and the Nogo-A receptor affect ß-amyloid metabolism and the downstream Rho GTP enzyme signaling pathway, which may affect the levels of ß-amyloid and tau. Nogo-A may play a key role in the pathogenesis of Alzheimer's disease. However, the underlying molecular mechanisms of Fasudil treatment in Alzheimer's disease are not yet clear. Our results have found that Fasudil treatment for two months substantially ameliorated behavioral deficits, diminished ß-amyloid plaque and tau protein pathology, and alleviated neuronal apoptosis in APP/PS1 transgenic mice. More importantly, two well-established markers for synaptic function, growth-associated protein 43 and synaptophysin, were upregulated after Fasudil treatment. Finally, the levels of Nogo-A, Nogo-A receptor complex NgR/p75NTR/LINGO-1 and the downstream Rho/Rho kinase signaling pathway were significantly reduced. These findings suggest that Fasudil exerts its neuroprotective function in Alzheimer's disease by inhibiting the Nogo-A/NgR1/RhoA signaling pathway.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nogo/efeitos dos fármacos , Receptor Nogo 1/efeitos dos fármacos , Quinases Associadas a rho/efeitos dos fármacos
3.
J Neuroimmunol ; 346: 577284, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32652366

RESUMO

Emerging evidence suggests an association of Alzheimer's Disease (AD) with microglial and astrocytic dysregulation. Recent studies have proposed that activated microglia can transform astrocytes to a neurotoxic A1 phenotype, which has been shown to be involved in the promotion of neuronal damage in several neurodegenerative diseases, including AD. In the present study, we observed an obvious microglial activation and A1-specific astrocyte response in the brain tissue of APP/PS1 Tg mice. Fasudil treatment improved the cognitive deficits of APP/PS1 Tg mice, inhibited microglial activation and promoted their transformation to an anti-inflammatory phenotype, and further shifted astrocytes from an A1 to an A2 phenotype. Our experiments suggest Fasudil exerted these functions by inhibing the expression of TLR4, MyD88, and NF-κB, which are key mediators of inflammation. Using in vitro experiments, we further validated in vivo findings. Our cell experiments indicated that Fasudil induces a shift of inflammatory microglia towards an anti-inflammatory phenotype. LPS-induced microglia-conditioned medium promotes A1 astrocytic polarization, but Fasudil treatment resulted in a direct transformation of A1 astrocytes to A2. To summarize, our results show that Fasudil inhibits the neurotoxic activation of microglia and shifts astrocytes towards a neuroprotective A2 phenotype, representing a promising candidate for AD treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...